ROSENTHAL’S THEOREM FOR SUBSPACES OF NONCOMMUTATIVE Lp

نویسندگان

  • MARIUS JUNGE
  • JAVIER PARCET
چکیده

We show that a reflexive subspace of the predual of a von Neumann algebra embeds into a noncommutative Lp space for some p > 1. This is a noncommutative version of Rosenthal’s result for commutative Lp spaces. Similarly for 1 ≤ q < 2, an infinite dimensional subspace X of a noncommutative Lq space either contains lq or embeds in Lp for some q < p < 2. The novelty in the noncommutative setting is a double sided change of density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rosenthal Inequalities in Noncommutative Symmetric Spaces

We give a direct proof of the ‘upper’ Khintchine inequality for a noncommutative symmetric (quasi-)Banach function space with nontrivial upper Boyd index. This settles an open question of C. Le Merdy and the fourth named author [24]. We apply this result to derive a version of Rosenthal’s theorem for sums of independent random variables in a noncommutative symmetric space. As a result we obtain...

متن کامل

Noncommutative Burkholder/Rosenthal inequalities II: applications

We show norm estimates for the sum of independent random variables in noncommutative Lp-spaces for 1 < p <∞ following our previous work. These estimates generalize the classical Rosenthal inequality in the commutative case. Among applications, we derive an equivalence for the p-norm of the singular values of a random matrix with independent entries, and characterize those symmetric subspaces an...

متن کامل

A Transference Method in Quantum Probability

The notion of independent random variables is central in probability theory and has many applications in analysis. Independence is also a fundamental concept in quantum probability, where it can occur in many different forms. In terms of norm estimates for sums of independent variables, free probability often plays the role of the best of all worlds. This is particularly true for applications i...

متن کامل

FINITE DIMENSIONAL SUBSPACES OF NONCOMMUTATIVE Lp Spaces

We prove the following noncommutative version of Lewis’s classical result. Every n-dimensional subspace E of Lp(M) (1 < p < ∞) for a von Neumann algebra M satisfies dcb(E,RC n p ) ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ for some constant cp depending only on p, where 1 p + 1 p = 1 and RC p = [Rn∩ Cn, Rn +Cn] 1 p . Moreover, there is a projection P : Lp(M) → Lp(M) onto E with ‖P‖cb ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ . We fo...

متن کامل

Maurey’s Factorization Theory for Operator Spaces

In Banach space theory probabilistic techniques play a central role. For example in the local theory of Banach spaces, geometric properties of finite dimensional subspaces are proved from probabilistic inequalities. The probabilistic approach not only enriched Banach space theory, but also introduced Banach space techniques in other areas such as probability or convex geometry. A famous instanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006